Antagonist Targeting microRNA-155 Protects against Lithium-Pilocarpine-Induced Status Epilepticus in C57BL/6 Mice by Activating Brain-Derived Neurotrophic Factor

نویسندگان

  • Zhengxu Cai
  • Song Li
  • Sheng Li
  • Fan Song
  • Zhen Zhang
  • Guanhua Qi
  • Tianbai Li
  • Juanjuan Qiu
  • Jiajia Wan
  • Hua Sui
  • Huishu Guo
چکیده

Epilepsy is a severe brain disorder affecting numerous patients. Recently, it is inferred that modulation of microRNA-155 (miR-155) could serve as a promising treatment of mesial temporal lobe epilepsy. In the current study, the therapeutic potential of miR-155 antagonist against temporal lobe epilepsy (TLE) was evaluated and the underlying mechanism involved in this regulation was explored. TLE model was induced by lithium-pilocarpine method. The effect of miR-155 antagonist on epilepticus symptoms of TLE mice was assessed using Racine classification and electroencephalogram (EEG) recordings. The expression of brain-derived neurotrophic factor (BDNF) and its association with miR-155 were also assessed with a series of experiments. Our results showed that level of miR-155 was significantly up-regulated after induction of TLE model. Based on the results of EEG and behavior analyses, seizures in mice were alleviated by miR-155 antagonist. Moreover, administration of miR-155 antagonist also significantly increased the level of BDNF. The results of dual luciferase assay and Western blotting showed that miR-155 antagonist exerted its action on status epilepticus by directly regulating the activity of BDNF. Taken all the information together, our results demonstrated that miR-155 antagonist might firstly induce the expression of BDNF, which then contributed to the alleviation of epilepsy in the current study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice

Status epilepticus is the most common serious neurological condition triggered by abnormal electrical activity, leading to severe and widespread cell loss in the brain. Lithium has been one of the main drugs used for the treatment of bipolar disorder for decades, and its anticonvulsant and neuroprotective properties have been described in several neurological disease models. However, the therap...

متن کامل

P-54: Melatonin Treatment Along Latent and Chronic Phases of Temporal Lobe Epilepsy, Protects Testes Against Destroying Effect of Lithium-Pilocarpine Induced Epileptic Rats

Background: Because of the observed protective effect of melatonin against TLE and the putative role of melatonin to influence neuroendocrine-gonadal axis, we tried to find out whether initiating the melatonin treatment after induction of Status Epilepticus (SE) and all along the different phases of epileptogenesis process, might be able to protect the testes and sperm against devastating effec...

متن کامل

Effect of Lithium on Brain-derived Neurotrophic Factor (BDNF) Level in Patients with Ischemic Stroke: A Clinical Trial

Background and Objectives: Previous studies have indicated that lithium may increase the level of the brain-derived neurotrophic factor (BDNF), which in turn improves the recovery of patients with stroke. In this controlled trial we evaluated the effect of lithium on BDNF serum level in patients with ischemic stroke. Methods: In this randomized controlled...

متن کامل

Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditio...

متن کامل

Differential Expression of Activating Transcription Factor-2 and c-Jun in the Immature and Adult Rat Hippocampus Following Lithium-Pilocarpine Induced Status Epilepticus

PURPOSE Lithium-pilocarpine induced status epilepticus (LPSE) causes selective and age-dependent neuronal death, although the mechanism of maturation-related injury has not yet been clarified. The activating transcription factor-2 (ATF-2) protein is essential for the normal development of mammalian brain and is activated by c-Jun N-terminal kinase (JNK). It induces the expression of the c-jun g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016